Statistics 3

Exercise 4C

1 a A 90\% confidence interval is

$$
\begin{aligned}
\bar{x} \pm 1.645 \times \frac{\sigma}{\sqrt{n}} & =75872 \pm 1.645 \times \frac{15000}{\sqrt{80}} \\
& =75872 \pm 2758.75 \\
& =(73113.25,78630.75) \\
& =(73113,78631)
\end{aligned}
$$

b Since n is large, the central limit theorem allows us to approximate the mean distance travelled as a normal distribution and so we can find a confidence interval for the mean distance travelled.

2 a $\sigma^{2}=\frac{1}{12}[(\mu+10)-(\mu-10)]^{2}$

$$
\begin{aligned}
& =\frac{1}{12}(20)^{2} \\
& =\frac{400}{12} \\
& =\frac{100}{3}
\end{aligned}
$$

b $\bar{x} \pm 1.96 \times \frac{\sigma}{\sqrt{n}}=78.7 \pm 1.96 \times \frac{\sqrt{\frac{100}{3}}}{\sqrt{120}}$

$$
\begin{aligned}
& =78.7 \pm 1.033 \\
& =(77.667,79.733) \\
& =(77.7,79.7)
\end{aligned}
$$

c Since n is large then the distribution of the sample mean will be approximately normally distributed.

3 a $\bar{x} \pm 1.96 \times \frac{\sigma}{\sqrt{n}}=175 \pm 1.96 \times \frac{80}{\sqrt{40}}$

$$
\begin{aligned}
& =175 \pm 24.79 \\
& =(150.21,199.79) \\
& =(150.2,199.8)
\end{aligned}
$$

b It is not necessary to assume that the value of merchandise sold has a normal distribution because the sample size is large and we can use the central limit theorem.

4 a $\quad \bar{x} \pm 1.645 \times \frac{\sigma}{\sqrt{n}}=14.5 \pm 1.645 \times \frac{1.5}{\sqrt{50}}$

$$
\begin{aligned}
& =14.5 \pm 0.349 \\
& =(14.151,14.849) \\
& =(14.15,14.85)
\end{aligned}
$$

b Maike should suggest that the supermarket reduces the stated fat content since the stated value of 15% is above the confidence interval.

INTERNATIONAL A LEVEL

Statistics 3

5 a Since the sample size is large, the central limit theorem can approximate the sample mean as a normal distribution as the original distribution is not assumed to be normal.
b $\bar{x} \pm 1.96 \times \frac{\sigma}{\sqrt{n}}=1.902 \pm 1.96 \times \frac{0.7}{\sqrt{100}}$

$$
\begin{aligned}
& =1.902 \pm 0.1372 \\
& =(1.765,2.039) \\
& =(1.77,2.04)
\end{aligned}
$$

6 a $\quad \sigma^{2}=\frac{1}{12}[(a+8)-(a-4)]^{2}$

$$
=\frac{144}{12}
$$

$$
=12
$$

$\mu=\frac{(a-4)+(a+8)}{2}$

$$
=a+2
$$

$$
\bar{Y} \sim \mathrm{~N}\left(a+2, \frac{12}{30}\right)
$$

$$
\bar{Y} \sim \mathrm{~N}(a+2,0.4)
$$

b $\quad \bar{Y} \sim \mathrm{~N}(a+2,0.4)$
Therefore a 99% confidence interval for μ is

$$
\begin{aligned}
(\bar{Y}- & 2.576 \times \sqrt{0.4}, \bar{Y}-2.576 \times \sqrt{0.4}) \\
& =(12.6-2.576 \times \sqrt{0.4}, 12.6-2.576 \times \sqrt{0.4}) \\
& =(10.97,14.23)
\end{aligned}
$$

Since $\mu=a+2$
the maximum value of Y is $a+8=\mu+6$
So the confidence interval for the maximum value of Y is:
(16.97, 20.23)

